A particle is projected from the ground with an initial speed $\upsilon $ at an angle $\theta $ with horizontal. The average velocity of the particle between its point of projection and highest point of trajectory is
$\frac{\upsilon }{2}\sqrt {1 + 2\,\,{{\cos }^{2\,}}\theta } $
$\frac{\upsilon }{2}\sqrt {1 + {{\cos }^{2\,}}\theta } $
$\frac{\upsilon }{2}\sqrt {1 + 3\,\,{{\cos }^{2\,}}\theta } $
$\upsilon \,\cos \,\theta $
Match the columns
Column $-I$ $R/H_{max}$ |
Column $-II$ Angle of projection $\theta $ |
$A.$ $1$ | $1.$ ${60^o}$ |
$B.$ $4$ | $2.$ ${30^o}$ |
$C.$ $4\sqrt 3$ | $3.$ ${45^o}$ |
$D.$ $\frac {4}{\sqrt 3}$ | $4.$ $tan^{-1}\,4\,=\,{76^o}$ |
A shell is fired from a fixed artillery gun with an initial speed $u$ such that it hits the target on the ground at a distance $R$ from it. If $t_1$ and $t_2$ are the values of the time taken by it to hit the target in two possible ways, the product $t_1t_2$ is
A projectile crosses two walls of equal height $H$ symmetrically as shown If the horizontal distance between the two walls is $d = 120\,\, m$, then the range of the projectile is ........ $m$
Two stones having different masses $m_1$ and $m_2$ are projected at an angle $\alpha$ and $\left(90^{\circ}-\alpha\right)$ with same speed from same point. The ratio of their maximum heights is
Trajectory of particle in a projectile motion is given as $y=x-\frac{x^2}{80}$. Here, $x$ and $y$ are in metre. For this projectile motion match the following with $g=10\,m / s ^2$.
$Column-I$ | $Column-II$ |
$(A)$ Angle of projection | $(p)$ $20\,m$ |
$(B)$ Angle of velocity with horizontal after $4\,s$ | $(q)$ $80\,m$ |
$(C)$ Maximum height | $(r)$ $45^{\circ}$ |
$(D)$ Horizontal range | $(s)$ $\tan ^{-1}\left(\frac{1}{2}\right)$ |